
CS6795 Semantic Web Techniques

Project Report

XSLT 2.0 Translation of
Datalog+ RuleML 1.01/XML to
a Subset of the TPTP Language

Meng Luan and Changyang Liu

University of New Brunswick, Faculty of Computer Science

December 17th, 2014

Professor: Dr. Harold Boley

Advisor: Dr. Tara Athan



1. Introduction

This project is aimed at implementing an XSLT 2.0 translator to convert Datalog+ De-
liberation RuleML 1.01 in XML format to an equivalent representation in a subset of the
TPTP (Thousands of Problems for Theorem Provers) language. The following sections
in this chapter introduce some of the languages that this project uses and the objectives
of this project. Chapter 2 describes the methodology for developing this project and for
solving the problems we encountered. The results of the project are provided in Chapter 3,
and we conclude with our major work in this project and possible future work in Chap-
ter 4. The project website [6] provides the distribution and the full documentation of this
project.

1.1. Languages

Several languages are in the center of this project. RuleML and the TPTP language are
respectively the source and the target languages of the translation. XSLT is the language
that we use to implement the translator. Each language is introduced briefly in the fol-
lowing.

RuleML. RuleML (Rule Markup Language) is a markup language designed in an XML
format. It is developed by an open non-profit organization of the same name, to provide
a uniform representation for all kinds of relevant rule languages. As part of semantic
technology efforts, the RuleML specification has become a de facto standard for Web
rule knowledge representation. In both industry and academia, RuleML is used to bridge
and exchange knowledge bases and queries among different systems [3], so the translation
between RuleML and other rule-based languages is prevalent. The specification of RuleML
pertinent to this project is Deliberation RuleML 1.01, which is the currently released
Deliberation version. Deliberation RuleML 1.01 has broad coverage across various rule
logics and has a modular schema system that allows fine-grained customization [4]. This
project has its focus on Datalog+ Deliberation RuleML 1.01, especially on the following
three defining Datalog+ extensions [1], which can also be used in Hornlog+:

2



� Existential Rules, where variables in rule conclusions are existentially quantified.

� Equality Rules, where the binary “Equal” predicate is applied in rule conclusions.

� Integrity Rules, which use the empty “Or” in rule conclusions to provide a convenient
way for expressing falsity.

All these extensions have their equivalent representation in the target language of the
translation in this project. The target language is a subset of the (full) first-order form
(FOF) of the TPTP language.

The TPTP language. TPTP is a comprehensive library of automated theorem proving
(ATP) test problems, which are available online. Its motivation is to provide support for
the testing and evaluation of ATP systems [7]. The TPTP site also hosts online services
for solving problems. These services are provided by the numerous individually developed
ATP systems (or the TPTP systems) accessible from the TPTP portal. Standard input
format is enforced by all the TPTP systems, whereby the TPTP language is defined.
The input of a TPTP system in the form of the TPTP language is also called a TPTP
problem, which consists of a number of TPTP formulae. A TPTP formula can be an
“axiom”, corresponding to the <formula> under <Assert> in RuleML, or a “conjecture”,
corresponding to the <formula> under <Query> in RuleML.

XSLT. XSLT (Extensible Stylesheet Language Transformations) Version 2.0 is a language
to describe the ways to transform XML documents into other XML, HTML or plain text
[2]. An XSLT document works as the input of an XSLT processor, together with the source
XML file to be translated. The XSLT processor is typically an executable program. A new
document is generated by the XSLT processor based on the content of the source XML
and the definitions in the input XSLT document, which is called an XSLT translator in
this report.

1.2. Objectives

As mentioned before, the task of this project is to implement an XSLT 2.0 translator
to convert Datalog+ Deliberation RuleML 1.011 knowledge bases2 into the representation
of the TPTP language, focusing on the three Datalog+ extensions. As the main goal of

1In the following parts of this report the term “RuleML” is also used as a shortcut for “Datalog+

Deliberation RuleML 1.01” when allowed by the context.
2Considered as the input of the translator, RuleML knowledge bases are called RuleML instances or

RuleML documents in this report.

3



this work, the translator should work correctly. In other words, the TPTP output of the
translator should be accepted and solved by the TPTP systems without error, provided the
RuleML input document is properly composed. The elements in the schema of Datalog+

Deliberation RuleML 1.01 should be supported by the translation as much as possible, and
any deviations should be documented.

Besides, we strive to render the output TPTP documents in a ”pretty-printed” manner,
i.e., with proper indentation, spacing and line breaking, to enhance the human readability.
The following3 is a sample formula in the TPTP language to illustrate the layout of pretty-
printing:

fof(property_of_integer, axiom, (

! [X] :

( integer(X)

=> ( even(X)

| odd(X) ) )

)).

The output TPTP formulae in this project always start with “fof”. In the above TPTP
formula, “!” stands for universal quantification, “=>” stands for implication, and “|”
stands for disjunction [8]. This formula means that if X is an integer, it is either even or
odd (technically, because “|” is inclusive, X could be both even and odd).

Our last goal is to retain comments in the translation from RuleML to the TPTP language.
RuleML uses XML comments and the TPTP language has its own line commenting syn-
tax starting with a “%” (TPTP systems also support another syntax for block comments,
however, we prefer to use line comments in this project). A comment in the TPTP lan-
guage extends from the first “%” to the end of the line [8]. Thus, the following RuleML
comment

<!-- A RuleML comment

is also an XML comment.

-->

will be converted into the following form in the TPTP language:

% A RuleML comment

% is also an XML comment.

3The RuleML input rule for producing this TPTP formula is given in Section 2.1.

4



2. Methodology

The procedure of the translation in this project consists of two phases as illustrated in
Figure 2.1. The first phase is to normalize the input RuleML document by another XSLT
translator, which is called the normalizer. The implementation of the normalizer itself is
not part of this project. In the second phase, the XSLT translator1 implemented in the
project is invoked to generate the output in the form of the TPTP document from the
normalized form of the input RuleML document.

Figure 2.1.: The process of translation, where the dashed arrows indicate normalization.

1The term “XSLT translator” used in this report here and later on will be dedicated to denote the specific
translator that is implemented in this project. The XSLT normalizer, which is also an XSLT translator
in the general sense, will always be referred to as the “normalizer”.

5



2.1. Normalization

In Deliberation RuleML 1.01 some elements can be reconstructed from other ones and thus
can be omitted for brevity. The omittable elements are edge elements (with first letters in
lowercase). In contrast, Node elements (with first letters in uppercase) cannot be omitted.
The following2 rule in RuleML is an example of the stripe-skipped form, i.e. without edge
elements but with only Node elements:

<RuleML xmlns="http://ruleml.org/spec">

<Assert>

<Forall>

<Var>x</Var>

<Implies>

<Atom>

<Rel>integer</Rel>

<Var>x</Var>

</Atom>

<Or>

<Atom>

<Rel>even</Rel>

<Var>x</Var>

</Atom>

<Atom>

<Rel>odd</Rel>

<Var>x</Var>

</Atom>

</Or>

</Implies>

</Forall>

</Assert>

</RuleML>

For example, in the above rule the first subelement of <Implies>, i.e. <Atom>, constitutes
the premise, and the next subelement, <Or>, is the conclusion. Their roles under <Implies>
are determined by their positions. The fully-striped form of the above rule, i.e. with all
edge elements in place (which will be the outcome of the normalizer used in this project)
is as follows:

<RuleML xmlns="http://ruleml.org/spec">

<act index="1">

2This rule is the RuleML input producing the TPTP formula in Section 1.2.

6



<Assert mapMaterial="yes" mapDirection="bidirectional">

<formula>

<Forall>

<declare>

<Var>x</Var>

</declare>

<formula>

<Implies material="yes" direction="bidirectional">

<if>

<Atom>

<op><Rel>integer</Rel></op>

<arg index="1"><Var>x</Var></arg>

</Atom>

</if>

<then>

<Or>

<formula>

<Atom>

<op><Rel>even</Rel></op>

<arg index="1"><Var>x</Var></arg>

</Atom>

</formula>

<formula>

<Atom>

<op><Rel>odd</Rel></op>

<arg index="1"><Var>x</Var></arg>

</Atom>

</formula>

</Or>

</then>

</Implies>

</formula>

</Forall>

</formula>

</Assert>

</act>

</RuleML>

Note that the reconstructed elements, e.g. <if> and <then>, reveal roles explicitly without
relying on their positions within <Implies>3.

3The reconstructed attributes, e.g. @material and @direction, are not needed in our development.

7



All in all, Deliberation RuleML 1.01 allows freedom to some extent of skipping edges, de-
faulting attribute values, and reordering elements. When the translation from RuleML is
performed, such freedom should be taken into account. However, a normalized RuleML
document with all edge elements reconstructed and canonical ordering of elements estab-
lished will significantly relieve the XSLT translator from dealing with positional semantics.
This is the reason why the normalization phase performs preprocessing for the transla-
tion. Note that RuleML provides several XSLT normalizers which we could utilize. The
normalizer that we adopt in this project is actually one4 for a superset of Datalog+ logic,
however, it serves well for this project.

2.2. XSLT Translator

Taking advantage of RuleML normalization discussed in the previous section, sophisticated
conditional branching between stripe-skipped and striped forms has been avoided in the
implementation of the XSLT translator Hence we developed the translator following more
closely to the “push style” of XSLT, as opposed to its “pull style”. The pull style usually
selects XML elements from the source document iteratively, and thus uses less XSLT
templates. In contrast, the push style prefers to write more XSLT templates for the XML
elements in the source document, and to apply the templates recursively. In general, the
push style makes an XSLT document better structured, and it is the style that we adopted
in this project.

Considering the scope of this project, any elements beyond Datalog+ expressivity such as
<Fun> and <Expr> are ignored by not applying any XSLT template to them. Most elements
defined in the schema of Datalog+ Deliberation RuleML 1.01 can be translated into proper
components of the TPTP language. The RuleML element for which the TPTP language
has no equivalent counterpart is <Retract>, which is also ignored in the translation5. In
addition, each TPTP formula has a unique name in the TPTP document, but rules in
RuleML do not require names. We assume unnamed RuleML rules and use the following
XSLT code to generate a unique name for every TPTP formula:

<!-- Formula name. -->

<xsl:value-of select="concat(

$formula-source, ’_in_act’, $act-index, ’_formula’,

4The normalizer document named 101 nafneghornlogeq normalizer.xslt used in this project can be found
at http://deliberation.ruleml.org/1.01/xslt/normalizer, visited on December 3rd, 2014.

5It would be possible to instead produce a warning or error message like “<Retract> not allowed in
TPTP” in the manner of the XSLT-implemented Schematron (http://www.schematron.com), but
this would cross the boundary between a translator (our task) and a validator for TPTP/RuleML (a
quite different task).

8

http://deliberation.ruleml.org/1.01/xslt/normalizer
http://www.schematron.com


count(preceding-sibling::r:formula) + 1)"/>

The above code is in the XSLT template matching the top level <formula> under <Assert>
or <Query>. The string-type parameter formula-source of this template has the value of
either “assert” or “query”, depending on the parent of this <formula>. The parameter act-
index has the same value as the attribute “index” (see the example of normalized RuleML
in Section 2.1) of the ancestor element <act>. The value (normally an integer) of this
optional attribute should be unique for each <act> in the RuleML document, and can be
reconstructed by the normalization phase if it is not provided in the original input RuleML
document. The generated name takes the form of “assert in act<M> formula<N>” or
“query in act<M> formula<N>”, where <M> is substituted for the value of attribute
“index” and <N> is substituted for by the sequential index of the current <formula>,
starting from 1, among all the elements of <formula> at the same level.

During the development of the XSLT translator, another problem we noticed is that the
text contents of <Rel>, <Var> and <Ind> may not follow the required syntax by the TPTP
language when they are used respectively as functors, variables and constants in the output
document. In the TPTP language, functors and constants must be character sequences
starting with a lowercase letter and containing only alphanumeric characters, or single-
quoted character sequences that contain only a set of printable characters. Backslashes and
apostrophe characters (or single quotation marks) must be escaped by a leading backslash
when they are single-quoted. Variables in the TPTP language must be character sequences
starting with an uppercase letter and containing only alphanumeric characters [8]. We
make the translator convert the first letter of the text contents of <Rel>, <Var> and <Ind>

into the proper case if the text contains only alphanumeric characters. Besides, if the text
contents of <Rel> and <Ind> contain non-alphanumeric characters, they will be escaped
by inserting backslashes properly and then single-quoted. The converted text as described
above is used as functors, variables or constants in the output TPTP document, but note
that it still may not conform to the TPTP syntax.

2.3. Java Wrapper

In this project, to perform the XSLT transformation, we use the Saxon XSLT proces-
sor, which can be either invoked as a Java library or run as an executable Java program
[5]. However, our translation combines two phases of XSLT transformation, firstly the
normalization phase and secondly the translation phase, so calling the Saxon XSLT pro-
cessor directly would lead to much typing and memorizing. Also we preferred a platform-
independent solution rather than maintaining multiple solutions for different platforms.
Therefore we developed a Java program to wrap the functionalities of the XSLT normal-

9



izer and the XSLT translator into a single executable. This Java program provides specific
command-line options for the translation task, reads the input RuleML document and gen-
erates the output according to the specified options. Usage instructions and more details
about the Java program are provided on our project website [6].

10



3. Results

Our XSLT translator as well as the Java wrapper works perfectly with all the Datalog+

examples1 accompanying the release of Deliberation RuleML 1.01. The project and the
documentation are published on GitHub2. The TPTP output documents of our translator
are well-formed and pretty-printed, and can be executed by TPTP-accepting (FOL) provers
such as Vampire 3.03. Here is another introductory example, showing the translation of
the three defining Datalog+ extensions mentioned in Section 1.1. The following document
is the original RuleML input:

<RuleML xmlns="http://ruleml.org/spec">

<!--

This document is an example to illustrate existential,

equality, and integrity rules.

-->

<Assert>

<!-- Existential:

Every human being has (at least) a mother. -->

<Forall>

<Var>H</Var>

<Implies>

<Atom>

<Rel>human</Rel>

<Var>H</Var>

</Atom>

<Exists>

<Var>M</Var>

<Atom>

<Rel>hasMother</Rel>

<Var>H</Var>

<Var>M</Var>

</Atom>

1http://deliberation.ruleml.org/1.01/exa/DatalogPlus, visited on December 17th, 2014.
2https://github.com/EdmonL/RuleML2TPTP, visited on December 17th, 2014.
3http://www.cs.miami.edu/~tptp/cgi-bin/SystemOnTPTP, visited on December 17th, 2014.

11

http://deliberation.ruleml.org/1.01/exa/DatalogPlus
https://github.com/EdmonL/RuleML2TPTP
http://www.cs.miami.edu/~tptp/cgi-bin/SystemOnTPTP


</Exists>

</Implies>

</Forall>

</Assert>

<Assert>

<!-- Equality:

Every human being has only one mother. -->

<Forall>

<Var>H</Var>

<Var>M1</Var>

<Var>M2</Var>

<Implies>

<And>

<Atom>

<Rel>hasMother</Rel>

<Var>H</Var>

<Var>M1</Var>

</Atom>

<Atom>

<Rel>hasMother</Rel>

<Var>H</Var>

<Var>M2</Var>

</Atom>

</And>

<Equal>

<Var>M1</Var>

<Var>M2</Var>

</Equal>

</Implies>

</Forall>

</Assert>

<Assert>

<!-- Integrity:

No one can be their own mother. -->

<Forall>

<Var>H</Var>

<Implies>

<Atom>

<Rel>hasMother</Rel>

<Var>H</Var>

<Var>H</Var>

</Atom>

12



<Or/>

</Implies>

</Forall>

</Assert>

</RuleML>

Note that the above document contains comments. The TPTP output translated from
this RuleML document is as follows:

% This document is an example to illustrate existential,

% equality, and integrity rules.

% Existential:

% Every human being has (at least) a mother.

fof(assert_in_act1_formula1, axiom, (

! [H] :

( human(H)

=> ? [M] : hasMother(H, M) )

)).

% Equality:

% Every human being has only one mother.

fof(assert_in_act2_formula1, axiom, (

! [H, M1, M2] :

( ( hasMother(H, M1)

& hasMother(H, M2) )

=> M1 = M2 )

)).

% Integrity:

% No one can be their own mother.

fof(assert_in_act3_formula1, axiom, (

! [H] :

( hasMother(H, H)

=> $false )

)).

For another, complex example showing the translation of all kinds of Datalog+ rules, see
Appendix A and Appendix B.

13



4. Conclusion

In this project, we developed a translator which utilizes XSLT 2.0 and which takes Datalog+

RuleML documents as input, and outputs equivalent TPTP-FOF documents. We remark
that we have achieved all the objectives discussed in Section 1.2. The major work we have
done in this project includes:

� Using an XSLT normalizer to preprocess Datalog+ RuleML input so that the com-
plexity of the XSLT translator is reduced.

� Developing the translator in XSLT 2.0 in push style.

� Making the TPTP output pretty-printed to improve human readability.

� Developing an Java wrapper to combine all the processes of the translation into a
single executable.

� Publishing and maintaining the project on GitHub, open-source.

4.1. Future Work

Future work regarding this project may focus on supporting more expressive RuleML
sublanguages, and on applying the translation tool to large rulebases. Some specific future
work may include:

� Composing RuleML2TPTP with translators targeting RuleML/XML.

� Making it a “Save as . . . ” option of other RuleML tools (e.g., editors and engines).

� Extending the expressivity of the RuleML input sublanguage from Datalog+ to
Hornlog+.

14



� Further extensions allowing first-order logic RuleML input and even higher-order
logic RuleML.

� Considering an inverse TPTP2RuleML translator (with increasing expressivity sub-
sets) for the TPTP-to-RuleML direction.

15



Bibliography

[1] Harold Boley. CS 6795 Semantic Web Techniques - Fall 2014 Projects. http://www.

cs.unb.ca/~boley/cs6795swt/fall2014projects.html. Visited on December 17th,
2014.

[2] The World Wide Web Consortium. XSL Transformations (XSLT) Version 2.0. http:

//www.w3.org/TR/xslt20. Visited on December 17th, 2014.

[3] RuleML Inc. RuleML Home. http://wiki.ruleml.org/index.php/RuleML_Home.
Visited on December 17th, 2014.

[4] RuleML Inc. Specification of Deliberation RuleML 1.01. http://wiki.ruleml.org/

index.php/Specification_of_Deliberation_RuleML_1.01. Visited on December
17th, 2014.

[5] Saxonica Ltd. SAXON - the xslt and xquery processor. http://saxon.sourceforge.
net/. Visited on December 17th, 2014.

[6] Meng Luan. RuleML2TPTP project entry page. http://edmonl.github.io/

RuleML2TPTP. Visited on December 17th, 2014.

[7] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF and
CNF Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362, 2009.

[8] Geoff Sutcliffe, Stephan Schulz, Koen Claessen, and Allen Van Gelder. Using the
TPTP Language for Writing Derivations and Finite Interpretations. In Automated
Reasoning, volume 4130 of Lecture Notes in Computer Science, pages 67–81. Springer
Berlin Heidelberg, 2006.

16

http://www.cs.unb.ca/~boley/cs6795swt/fall2014projects.html
http://www.cs.unb.ca/~boley/cs6795swt/fall2014projects.html
http://www.w3.org/TR/xslt20
http://www.w3.org/TR/xslt20
http://wiki.ruleml.org/index.php/RuleML_Home
http://wiki.ruleml.org/index.php/Specification_of_Deliberation_RuleML_1.01
http://wiki.ruleml.org/index.php/Specification_of_Deliberation_RuleML_1.01
http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://edmonl.github.io/RuleML2TPTP
http://edmonl.github.io/RuleML2TPTP


A. The Business Scenario Example in
RuleML

The following RuleML knowledge base is an instructive example1 accompanying the De-
liberation RuleML 1.01 release:

<?xml version="1.0" encoding="UTF-8"?>

<?xml-model href="http://deliberation.ruleml.org/1.01/relaxng/

datalogplus_min_relaxed.rnc"?>

<RuleML xmlns="http://ruleml.org/spec">

<!-- Some of these examples are from

"A general Datalog-based framework for tractable query answering

over ontologies",

Andrea Calı̀,

Georg Gottlob

Thomas Lukasiewicz

http://dx.doi.org/10.1016/j.websem.2012.03.001

(preprint at http://www.websemanticsjournal.org/index.php/ps/

article/view/289)

-->

<!-- This RuleML Document incrementally asserts into, retracts from and

queries a rulebase (within the <RuleML> element) for a total of

28 transactions: 13 Asserts, 2 Retracts and 13 Queries.

Each Query demonstrates the semantics of the previous Assert or

Retract

by providing (in the XML comments) the expected answer to the Query

.

-->

<Assert>

<!--

Equations are allowed as facts:

1http://deliberation.ruleml.org/1.01/exa/DatalogPlus/datalogplus_min.ruleml, visited on
December 17th, 2014.

17

http://deliberation.ruleml.org/1.01/exa/DatalogPlus/datalogplus_min.ruleml


William is an employee.

"Bill" is an alias for "William".

Sublanguage: datagroundfacteq

-->

<Atom>

<Rel>employee</Rel>

<Ind>William</Ind>

</Atom>

<Equal>

<Ind>Bill</Ind>

<Ind>William</Ind>

</Equal>

</Assert>

<Query>

<!--

Who are the employees?

Answers:

x: <Ind>Bill</Ind>

x: <Ind>William</Ind>

Sublanguage: datalogeq

-->

<Atom>

<Rel>employee</Rel>

<Var>x</Var>

</Atom>

</Query>

<Assert>

<!--

Equations may be universally quantified.

This fact is a degenerate case, corresponding to the body of an

implication being empty.

The following makes the reflexive property of equality explicit (

as built into most systems):

Everything is equal to itself.

Sublanguage: datalogeq

-->

<Forall>

<Var>x</Var>

<Equal>

<Var>x</Var>

<Var>x</Var>

18



</Equal>

</Forall>

</Assert>

<Query>

<!--

What is equal to itself?

Answers:

x: <Ind>Bill</Ind>

x: <Ind>William</Ind>

Sublanguage: datalogeq

-->

<Equal>

<Var>x</Var>

<Var>x</Var>

</Equal>

</Query>

<Assert>

<!--

Non-ground facts are allowed.

John is the CEO.

John is responsible for everything.

Sublanguage: datalogeq

-->

<Atom>

<Rel>CEO</Rel>

<Ind>John</Ind>

</Atom>

<Forall>

<Var>x</Var>

<Atom>

<Rel>responsible_for</Rel>

<Ind>John</Ind>

<Var>x</Var>

</Atom>

</Forall>

</Assert>

<Query>

<!--

Is John responsible for Bill?

Answers:

Succeeds.

19



Sublanguage: datalogeq

-->

<Atom>

<Rel>responsible_for</Rel>

<Ind>John</Ind>

<Ind>Bill</Ind>

</Atom>

</Query>

<Assert>

<!--

Rules are expressed as universally-quantified implications.

A simple rule can be used to assert a subclass relationship:

Every manager is an employee.

Sublanguage: datalog

-->

<Forall>

<Var>x</Var>

<Implies>

<if>

<Atom>

<Rel>manager</Rel>

<Var>x</Var>

</Atom>

</if>

<then>

<Atom>

<Rel>employee</Rel>

<Var>x</Var>

</Atom>

</then>

</Implies>

</Forall>

<Atom>

<Rel>manger</Rel>

<Ind>John</Ind>

</Atom>

</Assert>

<Query>

<!--

Who are the employees?

Answers:

20



x: <Ind>Bill</Ind>

x: <Ind>William</Ind>

x: <Ind>John</Ind>

Sublanguage: datalog

-->

<Atom>

<Rel>employee</Rel>

<Var>x</Var>

</Atom>

</Query>

<Assert>

<!--

Equations are allowed in the body of (existential) implications.

If anyone is the same as Margaret, then they supervise someone.

(Note that this rule could be semantically simplified

to an existential fact relying on axioms of equality.)

Sublanguage: datalogexeq

-->

<Forall>

<Var>x</Var>

<Implies>

<if>

<Equal>

<Ind>Margaret</Ind>

<Var>x</Var>

</Equal>

</if>

<then>

<Exists>

<Var>y</Var>

<Atom>

<Rel>supervises</Rel>

<Var>x</Var>

<Var>y</Var>

</Atom>

</Exists>

</then>

</Implies>

</Forall>

</Assert>

<Query>

21



<!--

Does Margaret supervise someone?

Answer:

Succeeds

Sublanguage: datalogeq

-->

<Exists>

<Var>y</Var>

<Atom>

<Rel>supervises</Rel>

<Ind>Margaret</Ind>

<Var>y</Var>

</Atom>

</Exists>

</Query>

<Assert>

<!--

Pairwise Disjoint Classes

Nothing is both an employee and a department.

Sublanguage: ncdatalog

-->

<Forall>

<Var>x</Var>

<Implies>

<if>

<And>

<Atom>

<Rel>employee</Rel>

<Var>x</Var>

</Atom>

<Atom>

<Rel>department</Rel>

<Var>x</Var>

</Atom>

</And>

</if>

<then>

<Or/>

</then>

</Implies>

</Forall>

22



</Assert>

<Assert>

<!-- HR is an employee.

HR is a department.

These facts together with the previous rule create an

inconsistency.

Sublanguage: datalog

-->

<Atom>

<Rel>employee</Rel>

<Ind>HR</Ind>

</Atom>

<Atom>

<Rel>department</Rel>

<Ind>HR</Ind>

</Atom>

</Assert>

<Query>

<!--

Is there any inconsistency?

Succeeds, indicating inconsistency.

Sublanguage: ncdatalog

-->

<Or/>

</Query>

<Retract>

<!--

Remove that HR is an employee.

Sublanguage: datalog

-->

<Atom>

<Rel>employee</Rel>

<Ind>HR</Ind>

</Atom>

</Retract>

<Query>

<!--

Is there any inconsistency?

Fails, indicating consistency.

Sublanguage: ncdatalog

-->

<Or/>

23



</Query>

<Assert>

<!--

Functionality Constraint:

Everyone (or everything) has at most one supervisor.

Sublanguage: datalogeq

-->

<Forall>

<Var>x</Var>

<Var>y</Var>

<Var>z</Var>

<Implies>

<if>

<And>

<Atom>

<Rel>supervises</Rel>

<Var>x</Var>

<Var>z</Var>

</Atom>

<Atom>

<Rel>supervises</Rel>

<Var>y</Var>

<Var>z</Var>

</Atom>

</And>

</if>

<then>

<Equal>

<Var>x</Var>

<Var>y</Var>

</Equal>

</then>

</Implies>

</Forall>

<Atom>

<Rel>supervises</Rel>

<Ind>Margaret</Ind>

<Ind>Bill</Ind>

</Atom>

<Atom>

<Rel>supervises</Rel>

<Ind>Peggy</Ind>

24



<Ind>Bill</Ind>

</Atom>

</Assert>

<Query>

<!--

Is Peggy the same as Margaret?

Answer:

Succeeds.

Sublanguage: datalogeq

-->

<Equal>

<Ind>Peggy</Ind>

<Ind>Margaret</Ind>

</Equal>

</Query>

<Assert>

<!--

Negative Constraints are allowed.

No one (or no thing) is their own supervisor.

Sublanguage: ncdatalog

-->

<Forall>

<Var>x</Var>

<Implies>

<if>

<Atom>

<Rel>supervises</Rel>

<Var>x</Var>

<Var>x</Var>

</Atom>

</if>

<then>

<Or/>

</then>

</Implies>

</Forall>

</Assert>

<Assert>

<!--

Margaret supervises Peggy.

Sublanguage: datalog

25



-->

<Atom>

<Rel>supervises</Rel>

<Ind>Margaret</Ind>

<Ind>Peggy</Ind>

</Atom>

</Assert>

<Query>

<!--

Is there any inconsistency?

Succeeds, indicating inconsistency.

Sublanguage: ncdatalog

-->

<Or/>

</Query>

<Retract>

<!--

Remove that Margaret supervises Peggy.

Sublanguage: datalog

-->

<Atom>

<Rel>supervises</Rel>

<Ind>Margaret</Ind>

<Ind>Peggy</Ind>

</Atom>

</Retract>

<Query>

<!--

Is there any inconsistency?

Fails, indicating consistency.

Sublanguage: ncdatalog

-->

<Or/>

</Query>

<Assert>

<!--

Equations may appear in the body of negative constraints.

The simplest case is the assertion that two individuals

are different (as built into systems making the unique name

assumption).

Sublanguage: ncdatalogeq

26



-->

<Implies>

<if>

<Equal>

<Ind>Sue</Ind>

<Ind>Maria</Ind>

</Equal>

</if>

<then>

<Or/>

</then>

</Implies>

</Assert>

<Query>

<!--

Is Sue the same as Maria?

Answer:

Fails.

Sublanguage: datalogeq

-->

<Equal>

<Ind>Sue</Ind>

<Ind>Maria</Ind>

</Equal>

</Query>

<Assert>

<!--

Existential (Head) Rules

Every manager directs at least one department.

Maria is a manager.

Sublanguage: datalogex

-->

<Forall>

<Var>M</Var>

<Implies>

<if>

<Atom>

<Rel>manager</Rel>

<Var>M</Var>

</Atom>

</if>

27



<then>

<Exists>

<Var>P</Var>

<Atom>

<Rel>directs</Rel>

<Var>M</Var>

<Var>P</Var>

</Atom>

</Exists>

</then>

</Implies>

</Forall>

<Atom>

<Rel>manager</Rel>

<Ind>Maria</Ind>

</Atom>

</Assert>

<Query>

<!--

Does Maria direct a department?

Answer:

Succeeds.

Sublanguage: datalog

-->

<Exists>

<Var>P</Var>

<Atom>

<Rel>directs</Rel>

<Ind>Maria</Ind>

<Var>P</Var>

</Atom>

</Exists>

</Query>

<Assert>

<!--

The heads and bodies of existential rules can contain

conjunctions.

Every employee who directs a department is a manager, and

supervises at

least another employee who works in the same department.

Sublanguage: datalogexcon

28



-->

<Forall>

<Var>E</Var>

<Var>P</Var>

<Implies>

<if>

<And>

<Atom>

<Rel>employee</Rel>

<Var>E</Var>

</Atom>

<Atom>

<Rel>directs</Rel>

<Var>E</Var>

<Var>P</Var>

</Atom>

</And>

</if>

<then>

<Exists>

<Var>E’</Var>

<And>

<Atom>

<Rel>manager</Rel>

<Var>E</Var>

</Atom>

<Atom>

<Rel>supervises</Rel>

<Var>E</Var>

<Var>E’</Var>

</Atom>

<Atom>

<Rel>works_in</Rel>

<Var>E’</Var>

<Var>P</Var>

</Atom>

</And>

</Exists>

</then>

</Implies>

</Forall>

</Assert>

29



<Query>

<!--

Does Maria supervise someone?

Answer:

Succeeds.

Sublanguage: datalog

-->

<Exists>

<Var>E’</Var>

<Atom>

<Rel>supervises</Rel>

<Ind>Maria</Ind>

<Var>E’</Var>

</Atom>

</Exists>

</Query>

</RuleML>

30



B. Translating the Business Scenario
Example to TPTP

The TPTP document below is the output of the translation from the RuleML document
in Appendix A. Note that the RuleML input contains comments as well as relators and
variables that do not follow the syntax of the TPTP language, for example, <Rel>CEO</
Rel> and <Var>E’</Var>. After the translation, the former one is converted into a valid
functor, cEO, in the TPTP language, but the translation of the latter one, still E’, will not
be executable by TPTP-accepting provers due to the apostrophe character. To execute
this TPTP output on a TPTP-accepting prover, it has to be revised further and manually.
Below is the TPTP output as the result of the translation:

% Some of these examples are from

% "A general Datalog-based framework for tractable query answering

% over ontologies",

% Andrea Calı̀,

% Georg Gottlob

% Thomas Lukasiewicz

% http://dx.doi.org/10.1016/j.websem.2012.03.001

% (preprint at http://www.websemanticsjournal.org/index.php/ps/article/

view/289)

% This RuleML Document incrementally asserts into, retracts from and

% queries a rulebase (within the <RuleML> element) for a total of

% 28 transactions: 13 Asserts, 2 Retracts and 13 Queries.

% Each Query demonstrates the semantics of the previous Assert or Retract

% by providing (in the XML comments) the expected answer to the Query.

% Equations are allowed as facts:

% William is an employee.

% "Bill" is an alias for "William".

% Sublanguage: datagroundfacteq

fof(assert_in_act1_formula1, axiom, (

employee(william)

)).

fof(assert_in_act1_formula2, axiom, (

31



bill = william

)).

% Who are the employees?

% Answers:

% x: <Ind>Bill</Ind>

% x: <Ind>William</Ind>

% Sublanguage: datalogeq

fof(query_in_act2_formula1, conjecture, (

employee(X)

)).

% Equations may be universally quantified.

% This fact is a degenerate case, corresponding to the body of an

implication being empty.

% The following makes the reflexive property of equality explicit (as

built into most systems):

% Everything is equal to itself.

% Sublanguage: datalogeq

fof(assert_in_act3_formula1, axiom, (

! [X] : X = X

)).

% What is equal to itself?

% Answers:

% x: <Ind>Bill</Ind>

% x: <Ind>William</Ind>

% Sublanguage: datalogeq

fof(query_in_act4_formula1, conjecture, (

X = X

)).

% Non-ground facts are allowed.

% John is the CEO.

% John is responsible for everything.

% Sublanguage: datalogeq

fof(assert_in_act5_formula1, axiom, (

cEO(john)

)).

fof(assert_in_act5_formula2, axiom, (

! [X] : responsible_for(john, X)

)).

% Is John responsible for Bill?

% Answers:

% Succeeds.

% Sublanguage: datalogeq

32



fof(query_in_act6_formula1, conjecture, (

responsible_for(john, bill)

)).

% Rules are expressed as universally-quantified implications.

% A simple rule can be used to assert a subclass relationship:

% Every manager is an employee.

% Sublanguage: datalog

fof(assert_in_act7_formula1, axiom, (

! [X] :

( manager(X)

=> employee(X) )

)).

fof(assert_in_act7_formula2, axiom, (

manger(john)

)).

% Who are the employees?

% Answers:

% x: <Ind>Bill</Ind>

% x: <Ind>William</Ind>

% x: <Ind>John</Ind>

% Sublanguage: datalog

fof(query_in_act8_formula1, conjecture, (

employee(X)

)).

% Equations are allowed in the body of (existential) implications.

% If anyone is the same as Margaret, then they supervise someone.

% (Note that this rule could be semantically simplified

% to an existential fact relying on axioms of equality.)

% Sublanguage: datalogexeq

fof(assert_in_act9_formula1, axiom, (

! [X] :

( margaret = X

=> ? [Y] : supervises(X, Y) )

)).

% Does Margaret supervise someone?

% Answer:

% Succeeds

% Sublanguage: datalogeq

fof(query_in_act10_formula1, conjecture, (

? [Y] : supervises(margaret, Y)

)).

% Pairwise Disjoint Classes

33



% Nothing is both an employee and a department.

% Sublanguage: ncdatalog

fof(assert_in_act11_formula1, axiom, (

! [X] :

( ( employee(X)

& department(X) )

=> $false )

)).

% HR is an employee.

% HR is a department.

% These facts together with the previous rule create an inconsistency.

% Sublanguage: datalog

fof(assert_in_act12_formula1, axiom, (

employee(hR)

)).

fof(assert_in_act12_formula2, axiom, (

department(hR)

)).

% Is there any inconsistency?

% Succeeds, indicating inconsistency.

% Sublanguage: ncdatalog

fof(query_in_act13_formula1, conjecture, (

$false

)).

% Is there any inconsistency?

% Fails, indicating consistency.

% Sublanguage: ncdatalog

fof(query_in_act15_formula1, conjecture, (

$false

)).

% Functionality Constraint:

% Everyone (or everything) has at most one supervisor.

% Sublanguage: datalogeq

fof(assert_in_act16_formula1, axiom, (

! [X, Y, Z] :

( ( supervises(X, Z)

& supervises(Y, Z) )

=> X = Y )

)).

fof(assert_in_act16_formula2, axiom, (

supervises(margaret, bill)

)).

34



fof(assert_in_act16_formula3, axiom, (

supervises(peggy, bill)

)).

% Is Peggy the same as Margaret?

% Answer:

% Succeeds.

% Sublanguage: datalogeq

fof(query_in_act17_formula1, conjecture, (

peggy = margaret

)).

% Negative Constraints are allowed.

% No one (or no thing) is their own supervisor.

% Sublanguage: ncdatalog

fof(assert_in_act18_formula1, axiom, (

! [X] :

( supervises(X, X)

=> $false )

)).

% Margaret supervises Peggy.

% Sublanguage: datalog

fof(assert_in_act19_formula1, axiom, (

supervises(margaret, peggy)

)).

% Is there any inconsistency?

% Succeeds, indicating inconsistency.

% Sublanguage: ncdatalog

fof(query_in_act20_formula1, conjecture, (

$false

)).

% Is there any inconsistency?

% Fails, indicating consistency.

% Sublanguage: ncdatalog

fof(query_in_act22_formula1, conjecture, (

$false

)).

% Equations may appear in the body of negative constraints.

% The simplest case is the assertion that two individuals

% are different (as built into systems making the unique name assumption).

% Sublanguage: ncdatalogeq

fof(assert_in_act23_formula1, axiom, (

( sue = maria

35



=> $false )

)).

% Is Sue the same as Maria?

% Answer:

% Fails.

% Sublanguage: datalogeq

fof(query_in_act24_formula1, conjecture, (

sue = maria

)).

% Existential (Head) Rules

% Every manager directs at least one department.

% Maria is a manager.

% Sublanguage: datalogex

fof(assert_in_act25_formula1, axiom, (

! [M] :

( manager(M)

=> ? [P] : directs(M, P) )

)).

fof(assert_in_act25_formula2, axiom, (

manager(maria)

)).

% Does Maria direct a department?

% Answer:

% Succeeds.

% Sublanguage: datalog

fof(query_in_act26_formula1, conjecture, (

? [P] : directs(maria, P)

)).

% The heads and bodies of existential rules can contain conjunctions.

% Every employee who directs a department is a manager, and supervises at

% least another employee who works in the same department.

% Sublanguage: datalogexcon

fof(assert_in_act27_formula1, axiom, (

! [E, P] :

( ( employee(E)

& directs(E, P) )

=> ? [E’] :

( manager(E)

& supervises(E, E’)

& works_in(E’, P) ) )

)).

% Does Maria supervise someone?

36



% Answer:

% Succeeds.

% Sublanguage: datalog

fof(query_in_act28_formula1, conjecture, (

? [E’] : supervises(maria, E’)

)).

37


	Introduction
	Languages
	Objectives

	Methodology
	Normalization
	XSLT Translator
	Java Wrapper

	Results
	Conclusion
	Future Work

	The Business Scenario Example in RuleML
	Translating the Business Scenario Example to TPTP

